STATISTICAL AND UNIFORM STATISTICAL CONVERGENCE OF SEQUENCES OF FUNCTIONS AND APPLICATIONS

Kailas Ahire

Assistant Professor Department of Mathematics M.S.G.College, Malegaon Camp. Dist-Nashik, Pin-423105, India (M.S.)

Abstract: The purpose of this paper is to introduce a statistical convergence and uniform Statistical convergence of sequence of real valued functions. Also Examine the validity of some theorems on Riemann- Integrable functions using statistical convergence and uniform statistical convergence of sequence of real valued functions.

Key words: Statistical convergence, Uniform statistical convergence, Statistical Cauchy Sequence,

Riemann Integrable function.

1 Introduction

The concept of statistical convergence was introduce by Fast[2] and Steinhaus[3]and later reintroduce by Schoenberg[4] independently. Some applications of statistical convergence in number theory and mathematical analysis can be found in [[1], [5],[6]]. Furthermore Gungor et al.[8] introduce the concept of a uniform statistical Cauchy sequence for functional sequence and show that it is equivalent to uniform statistical convergence of sequence of real-valued functions. Omer et al.[9] obtain a statistical version of Lebesgue bounded convergence theorem and examine the validity of the classical theorem of Measure Theory for statistical convergence. The concept pointwise and uniform statistical convergence of order α for sequence of real valued functions is introduce by Cinar et al.[10]. Fridy[11] focus on statistically limit superior and limit inferior. Balcerzak [12] discussed on a statistical convergence and ideal convergence for Sequence of functions, Salat [13] guided about statistical convergence sequence of real numbers, Goldberg [7] helps for obtaining some results. In this paper view of sequence of functions are Riemann-integral. The Riemann-integral is discussed in terms of Statistical convergence and Uniform statistical convergence.

2 Preliminaries

This section is allocated to recall the definitions that will be needed in this manuscript.

Definition 2.1 A subset A of the ordered set N of natural numbers is said to have density d(A).

If $\lim_{n \to \infty} \frac{|A_n|}{n} = A$ where, $A(n) = \{k \le n : k \in A\}$ and |A| denotes the cardinality of the set $A \subset N$.

Clearly finite set has zero density and d(A') = 1 - d(A) where d(A') = N - A.

If a property P(k) holds for all $k \in A$ with d(A) = 1. We say that P holds for almost all k, i.e. a.a.k.

Definition 2.2 A sequence of function $\{f_k\}$ is statistically convergent to f on a set M, if for every $\epsilon > 0$; $\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |f_k(x) - f(x)| \ge \epsilon, \text{ for every } x \in M\}| = 0 \text{ , i.e for every } x \in M,$

 $|f_k(x) - f(x)| < \epsilon$, a.a.k; In this case we write: $st - \lim f_k(x) = f(x)$ or $f_k(x) \xrightarrow{st} f(x)$

Definition 2.3 A sequence of function $\{f_k\}$ is statistically Cauchy sequence provided that for every $\epsilon > 0$ there is number n > N such that $\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |f_k(x) - f_n(x)| \ge \epsilon$, for every $x \in M\}| = 0$

Theorem 2.1 Let $\{f_k\}$ be a sequence of functions defined on \mathbb{R} is statistically convergent if and only if it is statistically Cauchy Sequence.

Proof. Let $\{f_k\}$ be a sequence of functions defined on \mathbb{R} is statistically converges to f. i.e. *st*- lim $f_k(x) = f(x)$ © 2020 JETIR December 2020, Volume 7, Issue 12

75

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : |f_k(x) - f_n(x)| \ge \frac{\epsilon}{2}, for \ every \ x \in M, n \ge N \right\} \right| &= 0 \\ \text{i.e.} |f_k(x) - f_n(x)| < \frac{\epsilon}{2}, n \ge N, \text{ a. a. k.} \\ \therefore \ \text{for } n \ge N, \ |f_k(x) - f_n(x)| \le |f_k(x) - f(x)| + |f_n(x) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \text{ a.a.k.} \\ \text{Hence} \ \lim_{n \to \infty} \frac{1}{n} |\{k \le n : |f_k(x) - f_n(x)| \ge \epsilon, \ for \ every \ x \in M\}| = 0 \\ \text{i.e. sequence} \ \{f_k\} \ \text{is statistically Cauchy Sequence.} \\ \text{Conversity: let} \ \{f_k\} \ \text{is statistically Cauchy Sequence.} \\ \text{To show that,} \qquad \lim_{n \to \infty} \inf \left\{f_k\} \ \text{is statistically Cauchy Sequence.} \\ \text{It is sufficient to show that,} \qquad \lim_{n \to \infty} \inf \left\{f_k\} \ \text{is statistically Cauchy Sequence.} \\ \therefore \ \lim_{n \to \infty} \frac{1}{n} \left| \left\{k \le n : |f_k(x) - f_n(x)| \ge \frac{\epsilon}{2}, for \ every \ x \in M, n \ge N \right\} \right| = 0 \\ \therefore \ \lim_{n \to \infty} \frac{1}{n} \left| \left\{k \le n : |f_k(x) - f_n(x)| \ge \frac{\epsilon}{2}, for \ every \ x \in M, n \ge N \right\} \right| = 0 \\ \Rightarrow \ \lim_{n \to \infty} \frac{1}{n} \left| \left\{k \le n : |f_n(x) - f_n(x)| \ge \frac{\epsilon}{2}, for \ every \ x \in M \right\} \right| = 0 \\ \Rightarrow \ \int_{N} + \frac{\epsilon}{2} \ \text{is upper bound and lower bound is } f_N - \frac{\epsilon}{2} \ for \ \text{the set} \ \left\{f_N, \ f_{N+1}, \dots \right\} \\ \therefore \ f_N - \frac{\epsilon}{2} \le \text{g.l.b.} \ \left\{f_n, \ f_{n+1}, \dots \right\} \le 1 \text{u.b.} \ \left\{f_n, \ f_{n+1}, \dots \right\} \le \epsilon \\ \Rightarrow \ \ln_{N} \left\{f_n, \ f_{n+1}, \dots \right\} \le \text{g.l.b.} \ \left\{f_n, \ f_{n+1}, \dots \right\} \le \epsilon \\ \Rightarrow \ \ln_{N} \left\{f_n, \ f_{n+1}, \dots \right\} \le \text{g.l.b.} \ \left\{f_n, \ f_{n+1}, \dots \right\} \le \epsilon \end{aligned}$$

We obtain $\limsup \{f_k\} \le \liminf \{f_k\} + \epsilon$. Since ϵ was arbitrary. This establish (2.1). \Box

3. Definitions:

Definition 3.1 Let *f* be a bounded function on closed and bounded interval [a, b]. Let $\sigma = \{a = a_0 < a_1 < a_2 < \dots < a_n = b\}$ be the subdivision of [a, b]. We define $U[f, \sigma]$ called upper sum for *f* corresponding σ as $U[f, \sigma] = \sum_{k=1}^{n} M[f, I_k] |I_k|$ note that $M[f, [a, b]] = l. u. b_{x \in [a,b]} f(x)$. and $L[f, \sigma]$ called a lower sum for *f* corresponding σ as $L[f, \sigma] = \sum_{k=1}^{n} m[f, I_k] |I_k|$, note that $m[f, [a, b]] = g.l. b_{x \in [a,b]} f(x)$. The $I_1, I_2, I_3, \dots, I_k$ are the component intervals of σ and $|I_k|$ is length of I_k .

Definition 3.2 A function f be bounded on closed bounded interval [a, b] is said to be Riemann integrable on [a, b], if $\int_{\underline{a}}^{b} f(x) dx = l. u. b. L[f, \sigma]$ and $\int_{\overline{a}}^{\overline{b}} f(x) dx = g. l. b. U[f, \sigma]$ are equal. That means $\int_{\underline{a}}^{b} f(x) dx = l. u. b. L[f, \sigma] = g. l. b. U[f, \sigma] = \int_{\overline{a}}^{\overline{b}} f(x) dx = \int_{\overline{a}}^{b} f(x) dx$. We write as $f \in \mathbb{R}[a, b]$.

Definition 3.3 A sequence of function $\{f_k\}$ is said to be uniformly statistically Convergent to f on a set M, if for every $\epsilon > 0$; $\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |f_k(x) - f(x)| \ge \epsilon$, for every $x \in M\}| = 0$, i.e. for every $x \in M$, $|f_k(x) - f(x)| < \epsilon$, a. a. k;

In this case we write: st-lim $f_k(x) = f(x)$ uniformly on M or $f_k(x) \xrightarrow{st} f(x)$ uniformly on M. Furthermore it is clear that uniformly statistical converges implies statistical convergence with the same limit point on the set M. But converse is not true.

Theorem 3.1 Let $\{f_k\}$ be a sequence of real valued functions defined on a metric space M which is uniformly statistical convergent to function f on M. If each f_k (k ϵI) is continuous at a ϵ M. Then f is also continuous at a.

Proof: Let $\{f_k\}$ be uniformly statistical convergent to function f on M. By definition (3.3) for every $\epsilon > 0$ $\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : |f_k(x) - f(x)| \ge \frac{\epsilon}{3}, \text{ for every } x \in M \right\} \right| = 0$ i.e. $|f_k(x) - f(x)| < \frac{\epsilon}{3}$ a.a.k.

Since each $f_N(N \in I)$ is continuous at *a* then there exists $\delta > 0$ such that $\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : |f_N(x) - f_N(a)| \ge \frac{\epsilon}{3}, \rho |x, a| < \delta, \text{ for every } x, a \in M \right\} \right| = 0,$

76

where ρ is metric for M. We have $|f(x) - f(a)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(a)| + |f_N(a) - f(a)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$ Thus $\lim_{n\to\infty}\frac{1}{n}|\{|f(x)-f(a)| \ge \epsilon, \rho |x,a| < \delta, for every x, a \in M\}| = 0$, hence f is continuous at a.

Corollary 3.1: A function f is continuous at almost every point in [a; b] then f is \mathbb{R} – integrable. **Corollary 3.2**: If $\{f_k\}$ is sequence of continuous real-valued functions on metric space M that uniformly statistically converges to f on M then f is also continuous on M.

Theorem 3.2 If $\{f_k\}$ is Sequence of functions in \mathbb{R} [a; b] and if uniformly statistically converges to f on [a; b] then f is also in \mathbb{R} [a; b].

Proof: For $\epsilon = 1$, there exists $N \in I$ such that $\lim_{n \to \infty} \frac{1}{n} |\{k \leq n : |f_k(x) - f(x)| \geq 1, k \geq N; x \in [a, b]\}| = 0$

 $\Rightarrow \lim_{n \to \infty} \frac{1}{n} |\{k \le n : |f_N(x) - f(x)| \ge 1, x \in [a, b]\}| = 0$ Now $|f(x)| \le |f_N(x)| + |f(x) - f_N(x)| < |f_N(x)| + 1$, for all $x \in [a, b]$ Each $f_N(x)$ is bounded and $f_N \in \mathbb{R}$ [a; b] Clearly f is also bounded and continuous on [a; b] $\therefore f$ is also in \mathbb{R} [a; b].

If $\{f_k\}$ is sequence of functions which is \mathbb{R} [a; b] and statistically convergent to a function f on [a, b], if $f \in \mathbb{R}$ [a; b]. Then it is true that $\{\int_a^b f_k\}$ statistically converges to $\{\int_a^b f\}$. Other words, $\lim_{k \to \infty} f_k(x) = f(x)$ That means $\lim_{k \to \infty} \frac{1}{n} |\{k \le n : |f_k(x) - f(x)| \ge \epsilon, x \in [a, b]\}| = 0$ Is $\lim_{k \to \infty} \int_a^b f_k(x) dx = \int_a^b f(x) dx$? This is equivalent to asking if $\lim_{k \to \infty} \int_a^b f_k(x) dx = \int_a^b \lim_{k \to \infty} f_k(x) dx$ (3.1)Means is it permissible to interchange limit and integration. For example, let, $f_k(x) = 2k; \frac{1}{2} \le \frac{2}{2}$

$$= 0; \text{ for all other } x \in [0, 1]$$

$$\operatorname{Now} \int_{0}^{1} f_{k}(x) \, dx = \int_{\frac{1}{k}}^{\frac{2}{k}} 2 \, k \, dx = 2 \, k \left(\frac{2}{k} - \frac{1}{k}\right) = 2 = \lim_{k \to \infty} \int_{0}^{1} f_{k}(x) \, dx$$

$$\operatorname{But} \lim_{k \to \infty} f_{k}(x) = \lim_{k \to \infty} 2 \, k = 0, \text{ for all other } x \in [0, 1] \text{ and } f_{k}(0) = 0; \ k \in I$$

$$\operatorname{Also for} \quad x > 0, \quad f_{N}(x) = f_{N+1}(x) = \dots = 0 \text{ if } \frac{2}{N} < x$$

$$\therefore \int_{0}^{1} \lim_{k \to \infty} f_{k}(x) \, dx = 0 \text{ . Hence equation (3.1) does not holds for given sequence } \{f_{k}\}.$$

Theorem 3.3 Let $\{f_k\}$ is Sequence of functions in \mathbb{R} [a; b] which is uniformly statistically converges to f on [a; b] then $f \in \mathbb{R}$ [a; b] and $\lim_{k \to \infty} \int_a^b f_k(x) dx = \int_a^b f(x) dx$ **Proof:** By theorem (3.2) $f \in \mathbb{R}$ [a; b]. By definition (3.3) for given $\epsilon \ge 0$ there exists $N \in I$

 $\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : |f_k(x) - f(x)| \ge \frac{\epsilon}{b-a}, k \ge N; \ x \in [a, b] \right\} \right| = 0$ Now $\left| \int_a^b f_k(x) \ dx - \int_a^b f(x) \ dx \right| = \left| \int_a^b [f_k(x) - \int_a^b f(x)] \ dx \right| \le \int_a^b |f_k(x) - f(x)| \ dx$ (3.3.1)Hence by equation (3.3.1) we obtain $\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \int_a^b f_k(x) \, dx - \int_a^b f(x) \, dx \right| \ge \int_a^b \frac{\epsilon}{b-a} \, dx = \epsilon \, , k \ge N; \, x \in [a,b] \right\} \right| = 0$ That means $\left\{\int_{a}^{b} f_{k}(x) dx\right\}$ statistically converges to $\int_{a}^{b} f(x) dx$. That means $\lim_{k \to \infty} \int_a^b f_k(x) dx = \int_a^b f(x) dx$.

If a sequence $\{f_k(x)\}$ uniformly statistically convergent to f and f'_k , f' exists for all $x \in [a, b]$, it may happened that $\{f'_k\}$ does not statistical converges to f' at some x.

For example, If $f_k(x) = \frac{x^k}{k}$, $0 \le x \le 1$ then $\{f'_k\}$ uniformly statistically converges to f = 0. But $\{f'_k(1)\}$ does not statistically converges to f'(1). Thus $\lim_{k \to \infty} f'_k(x) = (\lim_{k \to \infty} f_k)'(x)$ does not holds for x = 1.

Theorem 3.4 If $f'_{k}(x)$ exists for each $x \in [a, b]$, for each $k \in I$. If f'_{k} is continuous on [a, b]. If $\{f_{k}\}_{k=1}^{\infty}$ statistically converges on [a; b] to f, and if $\{f'_{k}\}$ uniformly statistically converges on [a; b] to g then g(x) = f'(x); $x \in [a, b]$. i.e. $\lim_{k \to \infty} f'_{k}(x) = f'(x)$, $x \in [a, b]$.

Proof: Since $\{f'_k\}$ uniformly statistically converges to g on [a; b]. By Corollary-2 sequence $\{f'_k(x)\}$ uniformly statistically converges to g on [a; y], where y ϵ [a, b]

by theorem (3.3)
$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \int_{a}^{y} f'_{k}(x) dx - \int_{a}^{y} g(x) dx \right| \ge \epsilon, \ y \in [a, b] \right\} \right| = 0$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \lim_{k \to \infty} \left| \left[f_{k}(y) - f_{k}(a) \right] - \int_{a}^{y} g(x) dx \right| \ge \epsilon, \ y \in [a, b] \right\} \right| = 0$$
(3.2)
But by hypothesis
$$\lim_{k \to \infty} f_{k}(y) = f(y) \text{ and } \lim_{k \to \infty} f_{k}(a) = f(a)$$

 \therefore equation (3.2) becomes as

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \lim_{k \to \infty} \left[f(y) - f(a) \right] - \int_a^y g(x) \, dx \right| \ge \epsilon, \ y \in [a, b] \right\} \right| = 0$$

By fundamental theorem of calculus $\lim_{n \to \infty} \frac{1}{n} |\{k \le n : | [f'(y) - g(y)]| \ge \epsilon, y \in [a, b]\}| = 0$

 $\Rightarrow f'(y) = g(y), y \in [a, b]$ $\Rightarrow f'(x) = g(x), x \in [a, b]$ $\Rightarrow \lim_{k \to \infty} f'_k(x) = f'(x), x \in [a, b]. \square$

Acknowledgements: I am very thankful to DST-FIST for providing Research facility in College.

References

- 1. Buck R. C, The measure theoretic approach to density, Am. J. Maths, (1946); 68: 560-580.
- 2. Fast H, Sur la convergence statistique, Coll. Maths, (1951); 2: 241-244.
- 3. Steinhaus H, Sur la convergence ordinaire et la convergence asymptotique, Coll. Maths,(1951);2:73-74.
- 4. Schoenberg I.J, The integrability of certain functions and related summability methods, *Am. J. Maths*, (1959); **66**: 361-375.
- 5. Buck R.C, Generalized asymptotic density, Am. J. Maths, (1953); 75: 335-346.
- Tripathy B.C,On statistically convergent and statistically bounded sequences, *Bull. Malaysian Maths Sci.* Soc., (1997); 20: 31-33.
- 7. Goldberg R.R, Methods of real Analysis, Oxford and IBH Publishing Co. PVt. LTD. New Delhi.,(1970).
- 8. Gungor M, Gokhan A, On uniform statistical convergence, Int. J. Pure Appll.Maths, (2005);19 (1):17-24.
- 9. Kisi O, Guler E, On Statistical convergence with respect to measure, *J.Classical Anal.*, (2017);**10(1)**:77-85.
- 10. Cinar M, Karakas M, Et M, On pointwise and uniform statistical convergence of order α for sequences of functions, *Fixed Pt Theory Appli.*, (2013); **33(1)**: 3-11.
- Fridy J. A, Orhan C, Statistical limit superior and limit inferior, *Pro. Am. Maths.Soc.*,(1997);125(12): 3625-3631.
- 12. Balcerzak M, Dems K, Komisarski A, Statistical convergence and ideal convergence for sequence of functions, *J. Maths Analy. Appli.*, (2007); **328:**715-729.
- 13. Salat T, On Statistically convergent sequence of real numbers, Maths. Slovaca, (1980); **30:**139-150.