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1 Introduction 

         The concept of statistical convergence was introduce by Fast[2] and Steinhaus[3]and later reintroduce 

by Schoenberg[4] independently. Some applications of statistical convergence in number theory and 

mathematical analysis can be found in [[1], [5],[6]]. Furthermore Gungor et al.[8] introduce the concept of a 

uniform statistical Cauchy sequence for functional sequence and show that it is equivalent to uniform 

statistical convergence of sequence of real-valued functions. Omer et al.[9] obtain a statistical version of 

Lebesgue bounded convergence theorem and examine the validity of the classical theorem of Measure 

Theory for statistical convergence. The concept pointwise and uniform statistical convergence of order   

for sequence of real valued functions is introduce by Cinar et al.[10]. Fridy[11] focus on statistically limit 

superior and limit inferior. Balcerzak [12] discussed on a statistical convergence and ideal convergence for 

Sequence of functions, Salat [13] guided about statistical convergence sequence of real numbers, Goldberg 

[7] helps for obtaining some results. In this paper view of sequence of functions are Riemann-integral. The 

Riemann-integral is discussed in terms of Statistical convergence and Uniform statistical convergence. 

 

2 Preliminaries 

          This section is allocated to recall the definitions that will be needed in this manuscript. 

 

 Definition 2.1  A subset A of the ordered set N of natural numbers is said to have density d(A).    

     If  lim
𝑛→∞

|𝐴𝑛|

𝑛
= 𝐴  where,  𝐴(𝑛) = {𝑘 ≤ 𝑛 ∶ 𝑘 𝜖 𝐴}  and  |𝐴|  denotes the cardinality of the set   A ⊂ 𝑁.  

     Clearly finite set has zero density and   𝑑(𝐴′) = 1 − 𝑑(𝐴)  where  𝑑(𝐴′) = 𝑁 − 𝐴. 

      If a property P(k)  holds for all  k 𝜖 A with d(A) = 1. We say that P holds for almost all k, i.e. a.a.k. 

 

Definition 2.2   A sequence of function {𝑓k} is statistically convergent to f on a set M,   if for every  ϵ > 0; 

    lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓(𝑥)|  ≥  𝜖, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  𝜖 𝑀}| = 0 , i.e  for every 𝑥  ϵ M,       

     |𝑓𝑘 (𝑥) − 𝑓(𝑥)| < 𝜖 , a.a.k ;  In this case we write:   𝑠𝑡 lim 𝑓𝑘(𝑥) = 𝑓(𝑥)    or 𝑓𝑘(𝑥)  
𝑠𝑡
→  𝑓(𝑥) 

Definition 2.3   A sequence of function {𝑓k} is statistically Cauchy sequence provided that for every  ϵ > 0       

       there is number n > N such that  lim
𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓𝑛 (𝑥)|  ≥  𝜖, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  𝜖 𝑀} | = 0  

 

Theorem 2.1  Let {𝑓k}  be a sequence of functions defined on ℝ is statistically convergent if and only if it is  

      statistically Cauchy Sequence. 

Proof.   Let {𝑓k} be a sequence of functions defined on ℝ is statistically converges to f.  

      i.e. st- lim 𝑓𝑘(𝑥) = f(x) 
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     lim
𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓𝑛(𝑥)|  ≥  

𝜖

2
 , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  𝜖 𝑀, 𝑛 ≥ 𝑁} | = 0 

         i.e. | 𝑓𝑘 (𝑥) − 𝑓𝑛(𝑥) | <  
𝜖

2
 , 𝑛 ≥ 𝑁,   a. a. k. 

     ∴  for 𝑛 ≥ 𝑁,  | 𝑓𝑘 (𝑥) − 𝑓𝑛(𝑥) |  ≤ | 𝑓𝑘 (𝑥) − 𝑓(𝑥) | + | 𝑓𝑛 (𝑥) − 𝑓(𝑥) | <  
𝜖

2
 +  

𝜖   

2 
 = 𝜖,  a.a.k. 

      Hence lim
𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓𝑛 (𝑥)|  ≥  𝜖, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  𝜖 𝑀} | = 0 

      i.e. sequence {𝑓k}  is statistically Cauchy Sequence. 

Conversly: let {𝑓k}  is statistically Cauchy Sequence. To show {𝑓k}  is statistically convergent. 

      It is sufficient to show that,         lim inf {𝑓k} = lim sup{𝑓k}                                                             (2.1) 

         Since , lim inf {𝑓k} ≤   lim sup {𝑓k}  , and {𝑓k}   is statistically Cauchy Sequence. 

     ∴   lim
𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓𝑛(𝑥)|  ≥  

𝜖

2
 , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  𝜖 𝑀, 𝑛 ≥ 𝑁} | = 0 

     ∴   lim
𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑁 (𝑥) − 𝑓𝑛(𝑥)|  ≥  

𝜖

2
 , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  𝜖 𝑀} | = 0  

        ⇒   𝑓𝑁 +  
𝜖

2
  is upper bound and  lower bound is  𝑓𝑁 −

𝜖

2
    for the set  { 𝑓𝑁 , 𝑓𝑁+1 , … … . }  

      ∴   𝑓𝑁 −  
𝜖

2
  ≤  g.l.b. { 𝑓𝑛 , 𝑓𝑛+1 , … … . } ≤ l.u.b. { 𝑓𝑛 , 𝑓𝑛+1 , … … . }  𝑓𝑁 +  

𝜖

2
 . 

      ⇒  l.u.b. { 𝑓𝑛 , 𝑓𝑛+1 , … … . }  − g. l. b. { 𝑓𝑛 , 𝑓𝑛+1 , … … . } ≤ 𝜖 

      ⇒  l.u.b. { 𝑓𝑛 , 𝑓𝑛+1 , … … . }  ≤ g. l. b. { 𝑓𝑛 , 𝑓𝑛+1 , … … . } + 𝜖; 

      We obtain lim sup {𝑓k} ≤ lim inf {𝑓k}   + ϵ. Since ϵ was arbitrary. This establish (2.1).  

 

3. Definitions: 

 

      Definition 3.1  Let  f  be a bounded function on closed and bounded interval  [a, b].  Let  

             𝜎 =  {𝑎 = 𝑎0 <  𝑎1 <  𝑎2  < ⋯ <  𝑎𝑛 = 𝑏}   be the subdivision of [a, b].  

        We define U [  f , 𝜎 ]  called upper sum for f corresponding 𝜎 as U [  f , 𝜎 ]  = ∑ 𝑀 [𝑓, 𝐼𝑘
𝑛
𝑘=1 ]  |𝐼𝑘| 

             note that  M [ f, [a ,b] ] = l. u. b𝑥 𝜖 [𝑎,𝑏]𝑓(𝑥). 

             and  L [  f , 𝜎 ]   called a lower  sum for f corresponding 𝜎 as  L [  f , 𝜎 ]  = ∑ 𝑚 [𝑓, 𝐼𝑘
𝑛
𝑘=1 ]  |𝐼𝑘| , 

               note that   m [ f, [a ,b] ] = g. l. b𝑥 𝜖 [𝑎,𝑏]𝑓(𝑥). 

              The   I1, I2, I3,….., Ik  are the component intervals of  𝜎  and |𝐼𝑘| is length of  Ik . 

 

   Definition 3.2  A function  f  be bounded on closed bounded interval [a, b] is said to be Riemann  

           integrable on [a, b],  if  ∫ 𝑓(𝑥) 𝑑𝑥 = l. u. b.  𝐿[𝑓,
𝑏

𝑎
 𝜎 ]  and  ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
=  g. l. b. 𝑈 [𝑓, 𝜎]  are equal. 

           That means   ∫ 𝑓(𝑥) 𝑑𝑥 = l. u. b.  𝐿[𝑓,
𝑏

𝑎
 𝜎 ]  = g. l. b. 𝑈 [𝑓, 𝜎] =  ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥 

𝑏

𝑎
. 

            We write as  f 𝜖 ℝ [𝑎, 𝑏]. 
 

Definition 3.3  A sequence of function {𝑓k}  is said to be uniformly statistically Convergent to f  on a set M,  

     if for every  ϵ > 0;   lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓(𝑥)|  ≥  𝜖, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  𝜖 𝑀}| = 0 ,  

       i.e.  for every 𝑥  ϵ M,   |𝑓𝑘 (𝑥) − 𝑓(𝑥)| < 𝜖 , a. a. k ;   

       In this case we write:   𝑠𝑡 lim 𝑓𝑘(𝑥) = 𝑓(𝑥) uniformly on M   or 𝑓𝑘(𝑥)  
𝑠𝑡
→  𝑓(𝑥) uniformly on M. 

      Furthermore it is clear that uniformly statistical converges implies statistical convergence with the same  

       limit point on the set M.  But converse is not true.  

 

 

 Theorem 3.1  Let {𝑓k}  be a sequence of real valued functions defined on a metric space M which is  

          uniformly statistical convergent to function  f on M. If each f k  (k 𝜖 I) is continuous at a 𝜖 M . Then f     

          is also continuous at a. 

Proof: Let {𝑓k}   be uniformly statistical convergent to function f on M. By definition (3.3) for every ϵ > 0  

     lim
𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓(𝑥)|  ≥  

𝜖

3
 , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥  𝜖 𝑀} | = 0 

     i.e.  |𝑓𝑘 (𝑥) − 𝑓(𝑥)| <  
𝜖

3
    a.a.k. 

     Since each  fN (N 𝜖 I) is continuous at a then there exists δ > 0 such that 

     lim
𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛: | 𝑓𝑁 (𝑥) − 𝑓𝑁 (𝑎)|  ≥  

𝜖

3
 , 𝜌 |𝑥, 𝑎| < 𝛿, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑎 𝜖 𝑀} | = 0,  
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     where 𝜌  is metric for  M. 

     We have  |𝑓(𝑥) − 𝑓(𝑎)| ≤ |𝑓(𝑥) − 𝑓𝑁 (𝑥)|+|𝑓𝑁 (𝑥) − 𝑓𝑁 (𝑎)| + | 𝑓𝑁 (𝑎) − 𝑓(𝑎)| <
𝜖

3
+

𝜖

3
+

𝜖

3
= ∈ 

     Thus   lim
𝑛→∞

1

𝑛
| {|𝑓 (𝑥) − 𝑓(𝑎)|  ≥ ∈, 𝜌 |𝑥, 𝑎| < 𝛿, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑎  𝜖 𝑀} | = 0 , hence f  is continuous at a.  

 

Corollary 3.1: A function  f  is continuous at almost every point in [a; b] then  f  is  ℝ −. integrable. 

Corollary 3.2: If {𝑓k}   is sequence of continuous real-valued functions on metric space M  that uniformly  

        statistically converges to f on M  then f  is also continuous on M. 

 

 Theorem 3.2 If {𝑓k}   is Sequence of functions in ℝ [a; b] and if uniformly statistically converges to f on 

         [a; b] then  f  is also in ℝ [a; b]. 

Proof:  For ϵ = 1, there exists N ∈ I such that 

 
lim

𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓(𝑥)| ≥ 1, 𝑘 ≥ 𝑁;  𝑥 𝜖 [𝑎, 𝑏]} | = 0 

       ⇒   

 
lim

𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑁 (𝑥) − 𝑓(𝑥)|  ≥ 1, 𝑥 𝜖 [𝑎, 𝑏]} | = 0 

      Now  |𝑓(𝑥)| ≤ |𝑓𝑁 (𝑥)|+| 𝑓(𝑥) − 𝑓𝑁 (𝑥)| < | 𝑓𝑁 (𝑥)| + 1,   for all  𝑥 𝜖 [𝑎, 𝑏] | 
      Each 𝑓𝑁 (𝑥) is bounded and 𝑓𝑁 𝜖  ℝ [a; b] 

      Clearly f  is also bounded and continuous on [a; b]  

   ∴  f   is also in ℝ [a; b].  

 

    If  {𝑓k}  is sequence of functions which is ℝ [a; b]  and statistically convergent to a function f on     

    [a, b], if  f  𝜖 ℝ [a; b].  Then it is true that {∫ 𝑓𝑘
𝑏

𝑎
}  statistically converges to  {∫ 𝑓

𝑏

𝑎
}.  

   Other words, lim
𝑘→∞

𝑓k(𝑥) = 𝑓(𝑥) 

   That means 

 
lim

𝑘→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓(𝑥)|  ≥ 𝜖, 𝑥 𝜖 [𝑎, 𝑏]} | = 0    

   Is lim
𝑘→∞

 ∫ 𝑓𝑘
𝑏

𝑎
(𝑥)𝑑𝑥 = ∫ 𝑓

𝑏

𝑎
(𝑥)𝑑𝑥 ? 

  This is equivalent to asking if  lim
𝑘→∞

 ∫ 𝑓𝑘
𝑏

𝑎
(𝑥)𝑑𝑥 = ∫ lim  

𝑘→∞

𝑏 

𝑎
 𝑓𝑘 (𝑥)𝑑𝑥                                                   (3.1) 

    Means is it permissible to interchange limit and integration. 

   For example, let,   

                𝑓𝑘 (𝑥) = 2𝑘 ; 
1

𝑘
 ≤  

2

𝑘
 

                           =  0; for all other  x 𝜖 [0, 1] 

           Now ∫ 𝑓𝑘 
1

0
(x) dx = ∫ 2 k dx = 2 k ( 

2

k
−  

1

k
 )

2

k
 

1

k

= 2 = lim
𝑘→∞

 ∫ 𝑓𝑘 
1

0
(x) dx 

           But   lim
𝑘→∞

𝑓𝑘 (𝑥) =   lim
𝑘→∞

 2 𝑘 =0,  for all other  x 𝜖 [0, 1]   and   𝑓𝑘 (0) = 0;   𝑘 𝜖 𝐼  

            Also for    x > 0 ,    𝑓𝑁 (𝑥) =  𝑓𝑁+1 (𝑥) = ⋯ = 0  if  
2

𝑁
 < x 

          ∴  ∫ lim
𝑘→∞

𝑓𝑘 
1

0 
(x) dx = 0 . Hence equation (3.1) does not holds for given sequence {𝑓k} . 

 

Theorem 3.3  Let {𝑓k} is Sequence of functions in ℝ [a; b] which is uniformly statistically converges to f on  

         [a; b]  then  f  𝜖 ℝ [a; b] and lim
𝑘→∞

 ∫ 𝑓𝑘
𝑏

𝑎
(𝑥)𝑑𝑥 = ∫ 𝑓

𝑏

𝑎
(𝑥)𝑑𝑥 

 Proof:  By theorem (3.2)  f 𝜖 ℝ [a; b]. By definition (3:3)  for given ϵ ≥ 0 there exists  N ϵ I 

          

 
lim

𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ |𝑓𝑘 (𝑥) − 𝑓(𝑥)|  ≥

𝜖

𝑏−𝑎
, 𝑘 ≥  𝑁;  𝑥 𝜖 [𝑎, 𝑏]} | = 0                                            (3.3.1) 

        Now  | ∫ 𝑓𝑘 (𝑥)
𝑏

𝑎
 𝑑𝑥 − ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
 | = | ∫ [𝑓𝑘 (𝑥)

𝑏

𝑎
− ∫ 𝑓(𝑥)] 𝑑𝑥

𝑏

𝑎
 |  ≤  ∫ | 𝑓𝑘 (𝑥) − 𝑓(𝑥) |  𝑑𝑥 

𝑏

𝑎
 

        Hence by equation (3.3.1) we obtain 

          

 
lim

𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ | ∫  

𝑏

𝑎
𝑓𝑘 (𝑥) 𝑑𝑥 − ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
|  ≥ ∫

ϵ

b−a
 𝑑𝑥 = 𝜖 

𝑏

𝑎
, 𝑘 ≥  𝑁;  𝑥 𝜖 [a, b]} | = 0                       

        That means   { ∫  
𝑏

𝑎
𝑓𝑘 (𝑥) 𝑑𝑥} statistically converges to  ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
. 

        That means   lim
𝑛→∞

 ∫  
𝑏

𝑎
𝑓𝑘 (𝑥) 𝑑𝑥 =  ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
.  

 

        If a sequence {𝑓𝑘 (𝑥)}  uniformly statistically convergent to f and   f ′k  ,  f ′ exists for all 

        x 𝜖 [a, b] , it may happened that { 𝑓′𝑘 } does not statistical converges to f ′ at some x. 
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   For example, If 𝑓𝑘 (𝑥) =  
𝑥𝑘

𝑘
 , 0 ≤ 𝑥 ≤ 1 then {𝑓′𝑘 }  uniformly statistically converges to f = 0.     

       But  {𝑓′
𝑘 

(1)} does not statistically converges to 𝑓′(1). 

      Thus 

 
lim

𝑘→∞
𝑓′

𝑘 
(𝑥) = (

 
lim

𝑘→∞
𝑓𝑘 )′(𝑥) does not holds for  x = 1. 

 

Theorem 3.4  If  𝑓′
𝑘 

(𝑥)  exists for each 𝑥 𝜖 [a, b], for each k 𝜖 𝐼 . If  𝑓′
𝑘 

 is continuous on [a, b]. If  

       {𝑓k } ∞
𝑘=1

 statistically converges on [a; b] to f,  and if  { 𝑓′k } uniformly statistically converges     

       on [a; b] to g then  g(x) = f ′(x) ;  x 𝜖 [a, b] .          i.e.  lim
𝑘→∞

𝑓′
𝑘 

(𝑥) =  𝑓′(𝑥) ,  x 𝜖 [a, b] . 

Proof:  Since { 𝑓′k } uniformly statistically converges to g on [a; b].  By Corollary-2 sequence     

       { 𝑓′
k

(𝑥)} uniformly statistically converges to g on [a; y] , where y 𝜖 [a, b]   

       by theorem (3.3) 

 
lim

𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ | ∫  

𝑦

𝑎
𝑓′

𝑘 
(𝑥) 𝑑𝑥 − ∫ 𝑔(𝑥) 𝑑𝑥

𝑦

𝑎
|  ≥  𝜖, 𝑦 𝜖 [a, b]} | = 0 

      ⇒ 

 
lim

𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ lim

𝑘→∞
| [ 𝑓𝑘 (𝑦) − 𝑓𝑘 (𝑎)] − ∫ 𝑔(𝑥) 𝑑𝑥

𝑦

𝑎
|  ≥  𝜖, 𝑦 𝜖 [a, b]} | = 0                            (3.2) 

       But by hypothesis  lim
𝑘→∞

 𝑓𝑘 (𝑦) = 𝑓(𝑦)  and  lim
𝑘→∞

 𝑓𝑘 (𝑎) = 𝑓(𝑎) 

      ∴  equation (3.2) becomes as 

         

 
lim

𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ lim |

𝑘→∞
 [𝑓(𝑦) − 𝑓(𝑎) ] − ∫ 𝑔(𝑥) 𝑑𝑥|

𝑦

𝑎
≥  𝜖, 𝑦 𝜖 [a, b]} | = 0 

      By fundamental theorem of calculus  

 
lim

𝑛→∞

1

𝑛
| {𝑘 ≤ 𝑛 ∶ | [𝑓′(𝑦) − 𝑔(𝑦) ]| ≥  𝜖, 𝑦 𝜖 [a, b]} | = 0 

    ⇒  𝑓′(𝑦) = 𝑔(𝑦),  𝑦 𝜖 [a, b] 
    ⇒  𝑓′(𝑥) = 𝑔(𝑥),  𝑥 𝜖 [a, b] 
    ⇒  lim

𝑘→∞
 𝑓′𝑘 (𝑥) = 𝑓′(𝑥),    𝑥ϵ [a, b].  
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